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1. Introduction

Secant approximations to finite dimensional matrices are used in many

computational algorithms. These approximations are matrices A+CRm" that

sat:sly a secant equation

A~s =y

for some yERm and sCRH. The most ccou.on appi.cauons, re'cewed briefly

below, are in solving square or rectangular systems of -,or.iinear equations, and

in solving unconstrained and constrained optirization prooler.s in this paper

we consider more general approximations A+,IRm x n that satisfy several secant

equations

AS = Y

for some Sc R "r P that has full column rank an, .": ! iL"p, an, the use of such

approximations in solving systems of norAmnehr equauons and uno onstrained

optmization problems.

Tne most basic use of secant approximations is in quasi-Newton algorithms

for Lhe square systems of nonlinear equations probiem,

given F R' .P' , find z~cRI such that F Xh) = 0

Thcse aigornthms generate a sequence of iterates }x , X,:C.R' , k = ,......that.

are ;nereasingy good approximations to x,. The k +18t iteration is based on an

affine model of F(x) around xk.1,

11.(k ,! = F 'X 11 + At iZ - Xk, 1)

wcre A,_R is a secant approz-.rratwn to "Zk! that obeys the 6ecant

eqUation

A+i sk zy (Y.2a)

where

sk =zk + -Xk - = P(Zx+I) - k(zk) (1.2b)

Equations (1.1-2) cause Mdk+l(z) to interpolate F(x) at z = zk as well as at

4'
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x = xk,, Many matrices AtcNRI" satisfy (1.2); the standard way to choose

4A is to update the previous approximation Ak by Broyden's update

T

Sk 
5

k

Broyden _965]) This update was shown by Dennis and Vor( "97'7' to be the

solution to

mirumize .,A - Ak by suLIcL to A .Z = -9,

where , ;:F denotes the Frobenius norm,

= Ai
%=i j~i

That is, At, is the least change secant upda e to Ak Broden, Dennis, and Mor6

snowed that the sequence of iterates generated by the quasi-Newton

rnethod

xkl= x- lik-F~zk)

witn Aki generated by (1.3) converges q-superlineariy to a root zx of F(z) pro-

• nded z arid A0 are sufficiently close to z. and F'(zm), respectively, F'(z3 ) is

nons'rguar, and F(z) is Lipschitz continuous in an open neighborhood contain-

ing -. For further review of secant methods for nonlinear equations, see Dennis

a.: .Vor '?77' or Dennis and Sclhnaoei L 963 ij

'r. -ction 2 we geaeralize alt the results stated in the last paragraph to

methocis where each approximation Ak, , in the affine model I :) satisfies p-n

secant equations

A ISk = Yt 14

for Sk, Yk C-i"'. The obvious choices of St and Yk are

Skej= zt+l - k,- Yke, = F(xk+,) - Fk(p (1.5)-

where ej denotes the j7h urut vector. If Ak+l satisfies (.4-5), then the affine

mode' (1.1) interpolates F(x) at zk,.-_, - k,z,. In Section 2 we give the gen-

eralization of Broyden's update that satisfies ('.4) and show that it is the least
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change update satisfying these equations. We aiso give conditions on JSk and

lYAJ under which the quasi-Newton method using this generalized Broyden's

update is locally q-superiineariv convergent. The material in Section 2 is only a

modest generalization of Gay and Schnabel '976]. iL Is inciuded because the
proofs are simpler and clearer, L to motivaLe tile Cte, i -eciion 3.

'The other problem considered in thus paper is Lrie unconstrained rrummiza-

tion problem,

minimize f)% ?'x) R (1.6)z E-R"

Ine firsL order necessary condition for x. to be a solution of (.6) is Vf (x.) = 0,

o ,! 6) can be considered a special case of the nonlinear equations problem

N:rere t'(z) = Vf (x) While this viewpoint has hmitations, i is useful in motivat-

mni secant methods for unconstrained minlmizaticn In particular, secant

methods for (1.6) base the kt-'? iteration on a model rm 'z) of f ') around x,,.

where Hk.,cR"' is an approximation to Vff Z If). If

HkI Sk = Y (1.7)

where

' k = xk +1 - ,k =" Vf '-r ) -Vf I'X)

then, Tr ',,x() interpolates Vf (x) at xt and xk+,, The major difference between

secant methods for nonlinear equations and unconstrained minimization is that

in urcor.itrained minimization V~fz) is symmetric so the approximations Hkj

s.oud be too.

Ooweai '970i introduced a symmetrized version of Broyden's update that

saisfies (" 7),

Ik + Yk-Hk sk)sk + Sk(yk -Hksk) T + (-HYk ksk)Tsk) SO (.
: S, (S Ts ().

and this update is known as the Powell symmetric Broyden (PSD) update.
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Dennis and Vor6 showed that (1.8) is the solution to

minimize ,H - Hki:F subject to H symmetric, H sk = y, ".9

provided that Ht is symmetric: that is. (:.6) is the least change symmetric

-.eant update to H. }Proydcn. Dennis and %Mor6 973] showed that the

sequence of iterates generated by the quasi-Newton method

£k,, = Zk - TlI-Vf(zk) (1:0)

with }/k generated by (.B) is locaily q-supertinearly convergent to a minimizer

_T of (z) under appropriate assumptions.

Two otner symmetric secant approximaLons to Vf (x), however, have been

rnior siccessful in practice. They are the BL3-CS dnd DFP updates. The BFGS

upd..-, named after its proposers Broycen l, ietcher .9701, Goldfarb

_9701 . and Shanno '.970], is

Y I/ksTHk
Hk+1= Hk +4k Yk k Stk Sk (.2

The D7?P update, named after its originators Davidon '1959J and Fletcher and

Powei, 963, is

= .-- k -Vk )' Yk(Yk-F P H's) +1kk (:1.3)
Yi'Sk k4

SupCdates obey (.7), and have the additional desirabWe property that if Ht is

'VM:.imetlric and positive definite and

YI. > , (1. :4)

then ilkt is well-defined, symmeLric and positive definite. In practice, Ho is

c} .sn;y'mrnetric and positive definite and (1 1..) is enforced by the line search,

so each ,k is symmetric and positive definite. Dennis and Mort [1977] showed

that both the BFGS and DFP updates are least change symmetric secant updates

in an appropriate weighted Frobenius norm, provided that Ilk is symmetric and

(' 4) holds. The DFP update is the solution to

4'= , mm mmmm



rn~nrnie (I - lk) ~ ~subject to H! s'imretric, 11
-ik A k(.b

,,na the iSK ' 'S update is tne solution to

m:mie W(II- ] I W1 :p subject to I!1 Svn.atric, 'I S' Y), : 6)

iiro j en, Dennis and Vor6 '9731 s:ce rIttet.-r diS ,enerdted by 1. 0'

using- cither the BFGS or DF?' Lpdcitc to cnurLoJ'x conver-c localiv and q-

S uperlorearly to a minimizer z, of f ',) undecr rea&-o -ib .is,,,mptlons Algo-

rimins isin2 the BF'GS update have proven; wo ht. the rnmt - ut a-nd efficient

se~;.algorithms for uriconst rai,eu mlmiirza~in i. rI~, rot more infor-

~i~; o; s-ca t itrCU' :or un.sraiec o7.mrr(...Dennis and Mor6r

1 ' r ciner - 9o3l, Gill. Vurrav. ctnc '4 r-yr :9 -rr and Scrinaoc.

7n of tnis paper cosircers metnocs- 'or iro .on mirnmization

whr o Ie mHiessian approimat~ofl H*, is askec ,c satisfy p-n secanL ecuations

Pk I Sk = (X1. 17)
for S, ' -?"~P. if Sk and Y. are chosen in the cobvious way

e Zc+ IZ+V Y'ke, I '~z ) V~Zk,>. z. >8

tsn e " -w quadratic mode, wou.o ri"ipoialL, thu p most rucer.; previous gra-

,W:Cr -..,r~iv he -in,-rssu; w;;. tre rq..- o% me n tr;:k +! ik. e svrn-

., r;c eCtruon 31gvsverv imp,,ncs;r ros~f~i~ corndit,ons for

(hue to be symmetric, or sYmmetric and posive defirite, Ilk+, satisfying

* ,if these conditions are satisfied, 1tion iii: resats aoout the PS13,

"CtS. and Y~P updates mentioned in the two previous para. raphs can be gen-

er -. ed ',o symnmetric updates that satisfy (1 .2)., and to minimization algo-

rithrrs thiat use these updates. Section 3 2 gives the generalizations of the PSB,



DF', and I3FGS updates that satisfy multiple secant equations, and shows that

they are least change symmetric updates in the same norms useci in (,.9),

;>1nd::'6) respectively Sect:,n 132 ccr~siders a spcial case of sym-

metric updates satisfying multiple secant equations that ',as received consider-

th'projected" updates ntcouli(ced by Davico -. 97D rcsbe

considere d by Deninis and Schiiabei .961], Nazareth _ t9761, Schtnabei

lo'7, .9781. ano others. Here one assumes that 11k already satisfles p -K of the

p tiant equations imposed upon 14I, We show that several of the projected

o crivcd by these authors are special cases of tne gt neralized PSB, DFP

SUpdates given in section 3?2. Secton 3 4- gives conditions on Sk: and

_,,der .%Lo ne iterates -enerated Lov U-ir. .1'i geedle PS

1~~oupdates. -onrverge locally anc. c-supcri nuar'v to a milnirmzer z, of

f, ?nu' prcofs require only minor modification of tne tcc> 2nsues of I3royden.

Dennis and Vor6 :9 a .nd Dennis and Vor6 '974.1 Finally i Section 3.b we

prcpose several ways for the preceding- material ()n uinconstrained minimization

Lo n;ave practical appLication, by suggesting several reasonable modifications of

Y~given by fl. 6) that would allow symmetric (and positive definite) updates

v;',Zing I4k~lStk = Yk t3 exist TIhese modifications to YA, do not aiter the

r ,r~'~ ecant equation 14,~s yt, and alter the other secant equations in a

'~n~beway The resultant ilgorithrns obey Llh( conditions of Section 3.4 for

q-:i ,per.r.car convernence -



2. Multiple secant equations for nonlinear equations

.he most basic use of secant approximations is in quasi-Newton methods for

sowvf4 systems of nonlinear equations. The approximation problem underlymg

I-c trGdrd methoi, is to flna an.,.. 11"" :.r . n,e:, ,. - j, shere s'CR' and

'y R'. As we mentioned in cton ". trw niost sucCeSsfui practical method is

b,,sed on cnoo!ing the A. that solves

minimize _.4, - A ' subect to A, s = y

wer A_ A The generaiizarion of this Lpprox:mat= c, probicm to mutipie

. rit equations is

minmize ,A, - A y, subjec to A, S : Y (2-.)
A ,cPm ft

S,,. -. p Y, , Hm' The soiution to 2 ", i Iiven m Theorem 2.

he reminder of tis section discusses methocs for soiving square systems

of ':,Lar equations where at each iteration, the update .iven in Theorem '.I

,;:ed to caLcuiatc a Jacobian approximation Ak,. HnR that satisfies

. for some S,,, yYck , . A special case. cons,oered Sy Barnes r1 9 65 1

:,iv .nd S chnaoel :978]. is when each pdLc enforces ihe new secant

.,ton ~nd preserves some old secant equatns sa tsfiud by AA Updates with

* ,. property are sometimes called projected secant updates". The least

eh, ~e projected secant update, a simpie coroijary of Theorem 2.1, is given in

ero*.,, rv .2 2. Theorem 2 5 then gives gencral conitions on S and Y J for a

CjL.,s,- \-wton method based on least change miftip'e secant updates to be q-

=nuri, or q-superhnearly, convergent It uses a generalization of the Broyden,

i),,rI., nd Vor6 . 973] bounded deterior&,on theore;.i that we state in

Theorem 23, and the Dennis-Mor6 -j97] characterization of q-superlinear con-

veren('- that we state in Theorem 2 4 Corollary 2.6 shows that the q-

superinear result of Theorem 2.5 applies to a class of methods that enforce the
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current and some past secant equations, including the method of Gay and

SchrAn:ei Th-is class of methods also ineluoes some alPorithrms not consldered

bv Cl.v amd Schnabel that mav be of oractica, interest

Theorem 2.1. Let p Tn, A.kmxn, .- ,Z, p 'i. fan,,S) p Then the

unique solution to 2. .) is

A, =A + (Y-, S) K 8 'S) 1(22)

Proof: It is straightforward to derive '2.2) by rec-ardir2 f2.:) as rn linear least

squares problems STb, = z, i ,Tn ;n the v'ar:aoes b,, wnere b, = row i of

A,-A and z, = row i of (Y-AS) A aifferent proof. gven bejow uses techniques

c." 1 _nnis and Vore ,'977j that are more closely related to the tecnniques we wili

ise .n Section 3

C. :arlv .4, given by '2.2) is well-defined and satLises .4. S = Y, Now let

I? .:?"x, ou any matrix satisfving B S = Y Subst:tutin: BS for Y :n [22) 7ives

A,-A _B-A)S STS, T I' .T P
w:er., P = S(STS)-ISI " is a Euclidean projection matrix and thus ,P 2 =

"7.-wreforu

IA,-AF ,H-A ..P = -,4

°hne sciutln is unique because (2 :) is a minimization problem in a strictiy con-

vex norm over a convex set.

',he ;se of secant updates in solving systems of nonlinear equations was

rcv~ewed ,n Setion I The standard secant update for nonhnear equations,

ilrov:( . -pt, causes the affine model

14,I(x) = F(x, 1 ) + Ak+I (z -xk+1) (2.3)

rr F,'z) around ZkI to interpolate F(x) at Zk and zA,i An obvious use for multi-

pWc ,ecant equations in solving systems of nonlinear equations is to cause (2.3)
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to interpolate F(z) at additional past iterates. For example, if is a

sequence of Pt past iterates satisfying

k = L I > L 2 > > >0 (24)

,,.nd AkI 1= :Yk where

SAej = Zk., - Xlk , yej X1 1) - Fkzk) 2.b)
then Mkj(z) interpolates F~z) at zi j-_. ,p as well as at z and ,

Conditions for a method based on the above secant equations to be q-

superlinearly convergent are given in Corollary 2.6. (Clearly. "Z must have full

column rank to guarantee the existence of Il, 1 )

A special case of the above is when all but one of the function values that we

ask .Mfk, 1,z) to interpolate already are interpolated by Mk zx) Barnes " 965] and

Gay and Schnabel " 978i consider a strategy that has this property They ask

the model !,dk,,(z) to interpolate F(z) at p, consecutive past iterates, as well as

at z, In the notation of the previous paragraph, this means that Ik = k +1-j

kP Thus

Skej = X_ , Y Zk+Vf - 1) Xk +I ,-j) (2.6)

Due to the inearity of the model (2.3), it is equivalent to define

: - =kI Yk = - 1"k.Zk '2.7)

I.ar..es and Gay and Schnaoel aiso assume that pk < Pjk 
1
+', ncanc, that any

previous function values that Mk 4,I(x) shouic intcrpo!ate already are interpo-

iateu by Mk(x). if the secant conditions are defined by (2.7), this implies that

(Pk - Atk 5) ej 0 ~2, pk
' o that

-At 'k =( -& At ) e T =y -Atsk e

where AIk ,ISt = yt is the current secant equation, i. e.

= x : I -x. yk = F(xk .1) - F(x).

h,
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if the Zcc,'nL equations are defined by (2.6), 'hen it Is easy to snow that

AY - k: ) Pi Yk - Ak.4 p.

:,[ -.t ','r ",Isc , Y - . i s a rariK one mlaLr:x v 2 2 fnows tnat LLie ieast

chan.,e mLitiple secant update is a rank one upoce in this case.

Corollary 2.2. Let the conditions of Theorem 2 be S,.sfied,, ana jet Y - AS -

AS -s) ' where v ER is nonzero. Then une unique sc.uIon to 2. ) Is

A= A +- - As) w

= "5 r7tc,) -c,

Proof: .,mediate from Theorem 2.

iif ; as in the methods of Barnes ara Gavy ind Schnaae., then it is

strai.htforward to show that u is a multiple of the Euciidean projection of the

first eoiumn of S onto the hnear subspace orthogonal to the remaimng columns

of S> Tne term "projected secant update" comes from this relationship.

A ,.cCai method based on the multiple secant updates discussed above is to

:cct LIch Zk I to be the root of Vk: ,z),

zk., x - A -'F(xk) (2.5)

t, itn choose S, Yk _R RPk, and update At to

AtI = At + (Yt - At :) (SkTSk)' Sk" (2.9)

Theoren; 2 D gives necessary conditions on Sk and Yk for the sequence of

iterates -lenerated by (28-9) to be locally q-linearly, or q-superinearly, conver-

gent to a root x, of F(z) where F'(z.) is nonsingular. The linear result is based

on Theorem 2.3, a slight generalization of the bounded deterioration Theorem
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3.2 in i3royden. Dennis, and Mor6 "973], which differs only in that q, = 0. The

proof of Theorem 2.3 is ormtted; see Theorem 9.2.2 of Schnabel _1977] for a

proof of a slightiy more general theorem The superlinear result is based on the

well known theorem of Dennis and Mor6 1974] which we restate in Theorem 2.4.

In the remainder of this paper, :a, cenoLes the '. vecLor or matrix norm.

For any SCR" xP with full column rank, K(S) denotes the L2 condition number of

S, K(S) =Si(STS)
-i Sr. For any xE:R ' , we define N(x.rq) to be the set

z CRI : ,;z -xjj<?7;.

Theorem 2.3. (Broyden. Dennis, and Mor6,- 1973]. Schnabe 977)

iet , "' MI -R be continuously differentiable in an open convex set D, and

,ssume there exists zc.D, 7>0, and y>0 satisfying A 3,'z1r7)zD, F(z)=0. F'(X.)
is nonsingular, and 'F'(z) -F(z) Z - z -z for al z, z rzN(z.). Consder

the sequence z0,z1 , of points in R" generated by (2.8), where the

sequence A0 , A,, of matrices in R ' satisfies

riAk+,-F(z,) A* -F"zx,).) y: + o U) + U2 1.* , (2.10)

A, max i!.X,+1-z, - .', -X,' . kq, - Xv. (2. )

k=O,. for some fixed cj-O, azDO, with q, = rinikq for some fixed q-O.

Then for each rE(O,1), there exist positive constants L(r), 6(r) such that Lf

.ZC - '5; r(r) and .Ao-F',x.) .F - 6(r), the sequence jzc, z, is well-

defined and converges to z. with

;:,Zk +1I -- ; r 7 ,,Xk - ;rx

for all k. Furthermore, Ak and )A -' are uniformly bounded.

Theorem 2.4. (Dennis and Mord 19741)

Let the assumptions of Theorem 2 3 hold. Let Ak be a sequence of nonsingular

matrce in R" " , and suppose for some zoCR'H the sequence of points gen-

erated by k2.8) remains in D and converges to ZI, with z, . z. for any k. Then

. . .I I I ,-
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tzr 5 converges q-supertineariy to x, if and only if

'Xk I'z) ( --Zk)'hm = 0 (2. 2)
Xk +I Xk

Thcorcm 2.b. Let the assumptioun. of 2 ")orr h'3 o:;, Uoisider the sequences

1z=j and '1.J generated from zo-R ' and AcChfl xn by 12.8-9) where Sk, YkcRy' P

with each pAc: 1,n]. Suppose there exist c >0, c?-", q-0, such that for k =

0, ",

Yk - F'(x,) Skt,,.-' c, Sk 'max! zk -, i=- 0..g (2.13)
,ind

K ,,t)!<c.(2.14)

where each q, t< maxlk qI Then there exist z-0, 60 such that if ;z0 - x, 9<-

and Ac - F(x,) <5 the sequence x is well-defined and converges q-hnearly

to z. and }Aj tA-'J are uniformly bounded. If in addition, for each k there

exi.sts 1" for which

Sk Vk= Xk4-1 Xic(2. 15)
then tne rate of convergence is q-superlinear

Proof: Let J. = F(z.). From (2.9)

(A,,-J,) = (4A-J,) (!,-Sk(5;1k)-Sk' + (Yk-J. Sk) (SkTS,)- S. (2 .:6)

Define Pt = SkkSkSk)-'S, and recall that ;,I%.., -PL -1. Then usuig also

(2 3), wvth,4k defined by (2.11), in (2 :6) gives

- ,< - JsF' I - Pk, + .,Y - J- Sk:.F ![(SkST)-i S',

:'A, - J.hF + c I K(.k)J

'Iherefort: from (2. :4). A. satisfles (2.:0) with i=O and 02=:: 1c 2 , which proves

q-inear convergence.

To prove q-superlnear convergence, define E = (At -J.). Since Pk is a

Euclidean projection matrix,
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Ten from ,2. 16). (2 "7), ,,2 :3). and ..:..),

Ek~~~~~. .1:1F bkF I u

VwrUth implies

Ek Pk ~s2 F K Y ,Lk I - ' + r Ir kz)(2)

ron the proof of linear convergence, there exist p,flgr (0,) such that AA P
t=O

and E'k p # for all k Using these bounds and surm,r, ,2 .6) from k =0 to)

gives

E t- P ,t .' -5 2 , # ,E c - & k ,F+.,, 1- - 2 A tc .., ) '!c #(b + P )
k=0 k=C

which proves that

lrm L Ilk (2.:9)

FInatlv we show that, if 22.:5) is true, Lhen (2.':9) implies tAve Dervnis-M.ort condi-

tion 21 *2) for superiinear convergence. Define s, = kk,, - xk) Then from

"'- A),

'Pks k- A'=Etk S~k 7 3 2"f = S -Vk S

zo tr.aL by the definition of an induced matrix norm

Ek P A'k I, Sk _~ _____

and from (2. 9)

Thus the method (2.8-9) satisfies condition (2.:2) of Theorem 2.4 and is q-

,uperineariv convergent. •

Theorem 25 says, roughly, that if A+, "k = Y are reasonable secant equa-

tions in that P"(z.) St is close enough to 1 , and if the columns of Sk are

suficently linearly independent, then the method (2.8-9) will be locally q-
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linearly convergent, if in addition the most recent secant equation Atlisk = yk

always is included, the method will be q-superlinearly convergent. Corollary 2.6

-no,s ,tiat the choices of 'k and YA, given by (2 4-)), which cause !ki,,(x) to

interpoiate F'x) at pk not necessarily consecutive past iterates including the

not reccn t, satisfy these crtLeria as long as the past :ierates ure Cnosen so that

each St is sufficiently linearly independent. and there is some upper bound on

bow many iterations back the secant equations can go.

Corollary 2.6. Let the assumptions of Theorem 2 3 hoid, L-d icl g!-, be fixed.

Consider the sequences jxk and .45' generated from xcJAMn and AcER nXfl by

,2o-9), where for each k, 1 !5; < mink + n q , Sk, YP C RPM wiLh

K(S) C

for some fixed c->, and

Skej =xA, -Zxk , Yte = F(x+,) -F(k). =:... ,pk

where

k t-I A > Izt > > >Lpkk :: max O. k + I-ql

Then there exist -, 6 > 0 such that if ,Iz0 -zk, 75 r and 'Ac- F'(z.), 6, the

scq.icnce zkt is well-defined and converges q-hinearly to z.. Furthermore, At

a:-d AM-' are uniformly bounded. If Li=k for all k, the rate of convergence is

q-supe rlnear.

Proof: 13v a well known lenma (see for example Section 3.2.5 of Ortega and

PHhelnboldt "970]),

Yk -F Z-)S?) e. 'Xk7 zI+l ,  max Zk * -"X z-Z, .y j S .e> .

where the last inequality uses only the definitions of S, and of pk from (2.1:).

Thus

1i~k - F(z,) s -9 FyS, iY A, z - N/-/ v 'iS;!Aik

so (2. :3) is satisfied and q-linear convergence is established by Theorem 2.5. If
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I l:k for all k, then q-superlinear convergence follows trivially since (2.15) is

true with vk =e I for all k. 9

The strategies covered by Corollary 2.6 for choosing the past iterates whose

function values the model will interpolate include Lhe strategy implemented by

Gay and Schnabel [1978], as well as the strategy used by Schnabel and Frank

I1983] in their "tensor method" for nonlinear equations. Schnabel and Frank

always select Skel = (Z,+I - x). Then they consider, in order, the steps from

1
k+j to x*-, • • , . xk*:q they include Zx+ l - zj- as a column of Sk if and only

if it makes an angle of more than 45' with the linear subspace spanned by the

already selected columns of Sk. Their experience is that the best results are

obtained using only information from fairly recent past iterates; they restrict

p,, and q, to be at most V-V. This strategy ailows considerably more flexibihty

in choosing past iterates than the strategy tested by Gay and Schnabel; it would

be interesting to test a secant algorithm for nonlinear equations that uses it.
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3. Multiple secant equations for unconstrained optimization

Now we turn to the unconstrained minimization probiem " 6). which we

reviewed briefly in Section '. The standard quadratic model of the objective

.unction,

7rk (z) f f(zk1) + Vf(z kJr(x-zk,,) + -, (3.:)

could interpolate several past gradient values if the symmetric approximation to

the Hessian Hk.i obeyed several secant equations

Ilk + 5
k = (t -3.2)

whE-rc ,;. YA, _["P are given by (1 .8). Several authcrs, starting with Schnabel

-9771 have noted that (3.2) may be inconsistent with the symmetry of HkI. In

Scction 3 * we show that there exists a symmetric, or symmetric and positive

definite, f4I+ satisfying (3.2) if and only if Yk7Sk is syrnMeLrc., or symmetric and

positive definite. respectively While the natural choices ('1:B) of Sk and Yk

sat,f;y these conditions if f (x) is a positive definite quadratzc, for general f 1z)

YkS, usually is not even symmetric. In Section 3.b we attempt to remedy this

dificuity by proposing several reasonable ways to perturb Yk to a Yt for which
-r

Yk,, is symmetric and positive definite. The preceding sections, 3.2-3.4, discuss

tne ;pdates and methods that may be used if the conditions for symmetric (and

pcst've Geflnite) multiple secant updates to exist are satisfied. Section 3 2

introcucu, generalizat ions of the PS3. DF11, and Bi"G6 updates tha, satisfy (3.2)

and shiows that they are the east ctnange updates in Le appropriate norms. In

,Section 3 3 we show tnat several -projected secant updates'' riat have been pro-

-:,d f'r ,r conrtraincd rn in:nlization are special rascs of the updates discussed

;n Secton 3 2. Section 3.4 shows that quasi-Newton methods based on our gen-

eralizations of the PSB. DFP, or BFGS updates are locally q-superlinearly conver-

gent under standard assumptions. The methods proposed in Section 3.5 satisfy

the conditions for q-superlinear convergence.



3.1. Necessary and Sufficient Conditions for Slymmetric Multipte Secant

Updates

Theorem 3.1. Lot n n.S, YcH xP, rarn(S) = p. Then tnere exist symmetric

!.Jle"' SUCn LhL i,.S = Y ki a.c only if YTS" is symmetr.c. There exist sym-

metric ani posiuive cetirute H1cIR" such that H S = ) if and only if Y"S is

sTnmetric a&n Dosit.ve def'tnie.

Proof Oruy 4 Suppcse nhere exists a symnunenc H, for wuch 1+S' :- Y. Then

Y r. is , ic. SLmIiariy, if H, Is sVMLmccr':c w oosiLtve definlue,

then = yrS i3 symmetric and pos ive efinte

if : Sppose yT 5 is synmetric. Then

y"S T S yf .)-r t s; Sy - T _ S TbS) I yT .S'S)-IS T 3.3)

is we,.i-.cfned, svmnaeric, and ooeys i HS = 1K Now -appose YTS is synmetric

and positive definite. Then

H2 : Y ' Y'S)- .

i wei.-defined, symmetrc, obeys H2S = Y, and is at least positive semi-definte.

Aiso :.nk<Y) p from YS nons-nguiar. Thus if p =n H2 is positive definite. If

P<n, let ZER" be any matrix whose coiumns all are in, and together span,

L., :-.. sp,".u'c of j, z Itna& ,_s, Z7S = Z , m z!-m n-p, and rank(Z) = -n-p. Then

1!3 = Y \-fQI YT + Z zT (3.4)
,s well- c:fled. symmetric, obeys H3S = Y, and is at least positive semi-definite.

Now ic: Uck?' " -P) be an orthonormal basis for the null space of S. Then Z =

U% wnore .' -R""-P) has full coLumn rank, i.e. NTN is nonsingular. Then

from 13.4).

H3 = M, M2 MI

where .I, M2 ER " ' ,
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1 Y U M2Al !NTN '

Ceariv M2 is nonsingular, and since

yTS yT L,,MT" S U, : i

Ml is nonsingular. Therefore H: is nonsingular and hence, positive definite.

,Note that the above proof could be simplified slightly by defining Z= U, how-

ever the more general defintion of Z will be useful to us in Section 3.2.

Now let us consider whether the conditions of Theorem 3., are likely to be

satisfied in the context of an unconstrained minimization algorithm. Suppose,

as Lr Section 2, that zjj* is a sequence of past iterates satisfying (2.4) and St,

YC -R ?t P are defined by

,k) :2+ , Yke Vf Zk-l) - , V "Zk), A . : '3..)

1f f(x) is quadratic, then Yk = V2f1z) Sk, so Yk"Sk is symmetric for any xz IJ,

and YkTSk is positive definite if Vf (x) is positive definite and St has full column

rank. When f (x) is not quadratic, however, it is unlikely that YkSk is sym-

mertc, as illustrated by the following example.

ZE2 ()= hx*])2) ++A Xj +x2,) , adsups

Example 3.1. Let zR, f() I z 2 Z and suppose

!%*m: i orithm generates z0 = '-2, -2), X 2-, -], z: (-1,0). If, in the

nalaion of the preceding paragraph, zi,, = X_; 1 =31,2, then

, I I=L'IS : 2j '1 [2 101j

12 4
yrS, = 2]

4, 2



19

Since the naturai secant equations for unconstratnec minimization, Ht+iSk

1, with S and Y defined by (3.5), rarely will satisfy the conditions of

Theorem 3.' when p >1, it migaht seem that the topic of multiple secant equa-

tions for unconstrained minimization is fruitless In Section 3.n, however, we will

.snow how a practical algorithm for unconstrained mirarmzatLion might generate

multiple secant equations that satisfy the conditions of Theorem 3. without

changing the current secant equation. Sections 3.2-3.4 investigate updates and

methods that are possible when the conditions of Theorem 3.' are satisfied.

3.2. Least change symmetre multiple secant updates

The reader may have noticed that the equation "3.3) used in the proof of

Theorem 3 1 reduces, in the case when p=, to the PSB update of H = 0. The

corresponding update to a nonzero H would be

HpSBg = H + (Y-HS)(S T S)-iS T + S(STS)-,(Y-HS) T  (3.6)
SSTS) -,Y-HS)TS(STS) isT

Eqcauon (3 6) is a generalization of the PSB update ( B) to multiple secant

etquat;ons, hence the name "PSBg' HpsBg is weli-defined and HpsBgS = Y as

vn.. .s S nas full coiumn rank if ft is symmetrc, then t is easy to see that

HK.pq. symmetric if and oniy if YTS is symmetric. The rank of Hpsy7-H is at

rrost 2p We show in Theorem 3 2 that if YTS and H are symmetric, then Hpsyg

is Lhe least change symmetric update to 11, in the Frobenius norm, that satisfies

1!,5 Y.

Correspondingly, the DFP update (1. 13) may be generalized to

HDP = H + (Y-HS)(yTS)-Iyr + Y(yT) i(Y-HS)r (37)

Sy(y'rS)- I(YHS)rS(yTS) - y'r
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-"/)ppj is well-defined and HDFPS = Y whenever yTS is nonsinguiar; it is sym-

rnetr~c if [1 and YTS are symmetric. Again, HDFIPr-H has rank at most 2p. We

aiso -Thow .n Theorem 3 2 that if H and Y 7 5" are symmetric and positive definite,

then IlDypr is the solution to

mmLn-ze .!W - H) - ' )H RB n  "(3.8)

subject to H, symmetric and positive defimte, 11, S = Y

wnere is any nonsingular matrix that satisfic.> ;YT 47 S = Y.

The reader also may have noticed that the matrices /ho and H; used in the

proof of Theorem 3.. are related to the BFGS update. -n fact- if H is symmetric

and pos.tve definite and

Z = H 1 - HS ,STi[S)-i ST pH (3.9)

tien the matrix H3 given by (3.4) is

= H + y yTs) I yT - HS kT ' -}iI . (3. '0)

a gfen2raization of the BFGS update :-2), if STH and YTs are nonsingular,

I/afr is well-definea and HBFGsgS = Y; HB1 cnsg is symmetric if H and Y TS are

symmotrc. 1toPe. c-H aiso has rank at most 2p Theorem .32 also shows that if

1! 'unrl /'"S are symmetric and positive definite, then HIqcsg is the solution to

minmize 'W(H+ - H--I)WT -, (3.::)
H, c -R xn

:s-uoject to I, symmetric and positive definite. H, S = Y

for anv nonsingular WCHn x
n that satisfies WT Wy S = y.

Theorem 3.2 Let p-n, Htr/ " ' symmetric. S, Y c/"' P , yTS symmetric,

) '[en the unique solut:on to

minimize .11, - i F subject to II, symmetric, It, S = Y (3.'2)

s llesri given by (3 6) If in addition H and yrs are positive definite, and

'Y---R is any nonsingular matrix that satisfies WTW S = Y, then the unique
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soiuons to (3.8) and (3.. -) are HDFpg given by (37) and IJ/,, given by (3.,0).

respectively

Proof : If S has full coiumn rank and I!, Y'rS are symmetric, then clearly HpsB2

Nen by i, 6) is synneLrc and satisies tI!,,,->, ." \ow let ii,: k'"I be any

symmetric matrix satisfying HS = Y, and define A'pSy_ = IIpsa-H, E = H.-A.

Then substituting H+S for eacn occurrence of Y in (3.6) gives

Epst9 = *PP + PP - PEP = PP + PtE(I-P) (3:3)

where p=S(STS)-iST is a Euchdean projection matrx recaii that ,P. - I,

i-P < . and P(I-P) = 0. We also use the fact that for any ',1 , M"2 C

!1IP - M 2!I-P).' fl 1P.4 + .. -!42 (-1, + 2 trace'.(,P'I-P),dr)

,1fiP . + IM2(I-P) 0 3.

Thus from 3 :3) and (3.14),

EpsBg , = :,P + , PE (I -P),

OF.,:P, + P.,2 :E(I -P)

= ;,EP + E(I-P), = P.,

with the last equality coming from another application of (314). Tn, zhows that.

3 6) :s a solution to (3.'2). The solution is unique because a3.2, ,: a minimiza-

ton problem in a strictly convex norm over a convex set.

if i rnd YTS are symmetric and positive definite, it is straightforward to

verfy that :he generalized DFP update (3 7) is k3.4) with

Z = tt - (y'rs) 1 STj Y

C!eariv /fS = 0, and since .€ is nonsingular and Y, " ZnXP,  has rank n-p

'ius from the proof of Theorem 3.1, 1tDF1,7 is symmetric, positive definite, and

satisfies 1lDFptS = Y The proof that HDFIg is the solution to (3.8) then follows

from applying the standard transformation of variables technique to the above

proof for the generalized PSB; see for example Dennis and Schnabel [1979]

F: nily, since the generalized BFGS update (3.,0)i s (3 4) with Z given by (3.9),
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the s~m'ne ar_;ment shows that it is symmetric, positve definite, and satisfies

H!y.r"S = Y The proof that H!'cps_ is the solution to 3 ' aiso is obtained in

the :t- 'n:wrd wav First the duat )" rresut :s romaine,, ,hak .s it s shewn that

tne qoiution to (3 1 1) is

H; ' = If + (S-H Y)' Y:-S) +, S, Y:*.:S) I'-tt yT '3. )

_ yT) -iS'jj S y) _ \ ,T

ihe- it is straighttorward to show that for/1, given !1 ,3 1). II, : HBcsg,

VIr.,' igcbra!c properties of stanard symmetrc s-ui.t updates can be

cxtet.uec to symmetrc multiple secant upnate> For exun:piu, the anaiog of the

13rovyccn one parameter class (Broven 970'. is

if'.v) = + VjM yr, V : '(STIfS>- - y ,T,', -1) (STHS),

where ViiUP'P is any Symmetrc matrix, ii ,M) is posILvC defite if A iS pOsi-

tivc deinite, and -IDFP = 11,'I). Also, the ChoiesKv factor:zation of 11DF/g or

l!,; mHy ne obtained in O',ry) operations from the Chocskv iacorizatLion of

I. for exampie if H = LLT then Hgr_= T where

J = L + (YG - IfS) (ST 1 1 ) -1 STL

for Cct: RP"P satisfying

GT IYTS) G = ST !S
can )e ca'culated in O(-nZp) operations, and its LQ factorization can be

coLained ,n an additionai O' n2p) operations

3.3. Projected symmetric secant updates

),ividon ' 1975] proposed a quasi-Newton algorithm that finds the minrmzer

or a positive defimte quadratic in at most n+ iterations. To accomplish this.

each quadratic model interpolates the gradients at current and all past iterates;

k. "!



that is, for each k,

V-mk Z) Vf~z> ;j k

Equation ~3 -6) implies that,

w hcr e A" ~ a r d c I ed D Y

Sim~ilarly Ut thLe iext turat.nn. DaVIdor, CmethGarcurO

where SA Y, -r~k;

It is str, ugh~orwaxa frOM, the abovi- 0ChnMiiens ',raL

yk-!: 2 :fYk ~!IN.
thatL is, ~ Z~j~A ( , + ScczpL'UiIC *n~~-

;y rn ct r:: se cant Lupuatcs 'Al s1tsf X~4

(3 J* Ci4 b c We r A'-Z' c

authors including cm- ana r5' uriavc\o N_'ri-Ctn Lronn~

9 77,' *) ( Tin y o ftL c a.: c~ ~r oict L

T'heorerr I'i thCt -'C l' en 9' ePca~d escdseSScu:

3.2 reduace to ran-k twio _ cawLS

CorolIlary 3.3. Pri' < I !~ > rr, oLri c, 'P~l , nS p,

y -HS ky -Hs P

Then thert exist symmetric I-I, for which II.S Y tf dLnd onIy if

whrea ~(-/Is ) in this cuse, the generalized 9Pi3 update ~3 6) :s a rarA'
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two U.pdatt? of i! ' i~ a,1,' . -.r i iS po) tt vC. d~f~r I* U e )' t , s ) %I I I~ Iiv

,drd positive definfte 11, for Wkiic~ i H S -Y k1 aflQ oniv i! 1it ) Is sdt-snec ai..i

whe re 7= & ( S'HS) I e !n tn: S cu,, k, oot' th~e genert~lzed U T _ipj Jtec3

and the !'cncralized i3c u; dale 3>, tire rpcs L v .~~:

updates of 11

1Prof : 'kftne L -!~:n irr .here -*r.~t

tig If# S =Y if dfd fi' - v~c :c£r~ ;

Since H i s syrreltric, ' s symnixtr:. Jf~t i.' .- ~:wp

e; Since TSt) T -bN 1!~ afic C;.. i

k3 :)is satisfied Lncw t 0K, 4tine(ratizvu1co , i'-.i pdit s~ ~.a n zw

ig '16) and 1,3 9) ito 16) shows that t-i his ,w..r ,-) CI~

whe re Sz S S _T~)

Also from nn r-r: r oeffs X;, ' ccri:c i . i r A f

and only if Y 7 i y,, .;,i wtr. iu po.12V t :& v .1 ~~

tivc definite xrid i:,

US., ;)1'tV r.r t, Vh .

where Y - y', ,,Sa ~ wn iu T2)il ,2.)&G~.i

Sherman- Yorsrr'', nr rmUid for Lnc inverc of ~ ives the 4zcnvrai-

ized HFGQS upJc t'c in 'm. i.,i ,
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where s S'<1.$ " i HS) y =Y(S7'iiS) -'P, -r

Trhe necessary and sufficient conditions for prolected SyrrP.eLr-IC SeCa.

updat~es ~o Lnterpolatce several p;.srt gridier. .s nave -neci (.scuse sevC "1

authors, starting with Schnabel L177 A 7 we alrea-dy', have? ndWcate'd, Lhev

rarely are satisfied if f !'z) is nonquadra-tic. ieven if (",'" i tru; In our OPvIF.or

this is tne fundamental re~i.son why projcr La SVMmu'_LrC r._ ,pa~ l

not been an improvement over the HFtGS in pr~icuice i1Tc pr, e )'up'adtc

'3.22) waxs proposed by Sennabel 977- r atf i~r.;r U !- u 1,az

to be q-siiperlinearly cenvergentL. Jf 'xi1cuia~ k ,_2"- the u. r .cM

update ori:; ,nally proposed ny 1)wv.con "9 ~i d prOu( 0C.. u.O JpIut

is derived by Dennis indc :cnnabei,

3.4. Superlincar convergence of quasi-Newton mettiods using syrnrneLzic rriul-

tiple secant updates

A 1cca e;,. ,rL.c:sja:.or2izLY e :.

fTU1-P~ciC a GPLIt d C r-,sc -et,!COn ,2 is to soc:,c UUC, z,~d ;~ lo

L)(: unCcrt.o pont Lhe L..rrer, jirtem

ttiw:n choose ' ,t, Y ' cf ln '-nat " .5' is zvmmntric. aflo upcate !:,, DV t:-,

ieneraI,'eo-~PSH * . or tY7"S, also i,, posit, c>:: yt ~c.r

,zed D~FP 3 7) or Hi~G 6_ :& apdatc. kCWhen we refer to updates 216, T.7 o r 3

in this section. we ass;ume that the symbols Hps.5 !n, . and Hfj'cs. in. thesc

forrnuids niave been converted to 11k.j, and th-at al! other svmbots in these for-

niulas have been given the subscript k ) In this section we show that if Jk andi
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obey C'ne same conditions (2.13-14) as were required for the iocal conver-

gence of the multiple secant method for nonlinear equations, then any of the

aforementioned methods for unconstrained minimization is locally and q-

superlneariy convergent to a minimizer x, of f (x), under standard assump-

tionis ?.orem 3.4 proves the iocal q-superhnear convergence of the method

that uses the generalized PSB update. The proof is based on Broyden. Dennis,

and .ore 973] and Dennis and Mor6 '1974], and is very sim-ular to the proof of

Thneorem 2 z. Theorem 3.5 states the analogous result for methods using the

generalized DFP. or BFGS, updates. The proofs would follow from the proof for

thO 'S13 method. Since these proof techniques are so well established, we ornit

the proof of Theorem 3.5 and just make a few comments about it.

Theorem 3.4. Let F : R"-R' be continuously differentiable in an open convex

set ), and assume there exists x. D, 77>0, and ->0 satisfying N(x.,77)CD,

F' x,)=,- ' x.) is symmetric and nonsirigular, and F(z) - F'(x), -:z-z,

for aW, z z CV'xSr) Consider the sequences }m5 and HkJ generated from

xcI( h ana a symmetric HCcl?"' by

Xk* I = Xk- Hk'F (xk)

Sr.e-,e ereralized PS13 update (3.6), wnere Skj, Ykj E_ " , with each pk

", >n1 .nd each ',S, symmetric. Suppose there exist c -O, c2-:, g0, such

that for k = 0, ". • -• I

Yk - F'(x.) S ,'F ! ci iSk ii maxj,xk_. - x.,J , i=-I, 0 .... qk (3.24)

and

K( 1S,,) c, (3.25)

where each q 5 .maxlk.q [ Then there exist ez;0, &-0 such that if ,.o -x,,l x

and 11C - F(x). -6, the sequence x,,3 is well-defined and converges q-linearly

to z., and "k , JHI J are uruformly bounded. If in addition, for each k there

exists vk cRP for which
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then tne rate of convergence is q-superlinear.

Proof : Let H, = F'(z,). E = (H - Hv), Pk = Sk(SkTSk)'S[ Then from (3.6) it

is straightforward to obtain

Ek lI= EM - EkPk + (Yk-Hm Sk) (SS 'St" - Pk E + SM(' Skr[SM)- ( kY - H . S)

+ PtEtP. - SM.(S SM)k (Y-H. S)T P

(I-Pt)Et(I-Pk) + (Y4-H. S M)Srk -'SM

+ Sk (STs)- Yt -H. S)T (I-P). (3.26)

Thus usi ng :.,I-MPk ,- 1, (3.24), and the definit1on (2. 11) of j,

: IE I ,-Pk,, 2 + r;Y-H, SM;F ( 5 "5 )-ST + .I-P )

:E!I~F+ 2 CI K'Sk)sM

Therefore from (3.25), Hk+ satisfies (2,10) with al 0 and a 2 = 2cIc 2 , which

proves q-hnear convergence from Theorem 2.3. To prove q-superhnear conver-

gence, derive from (3.26)

1EtiLF4 EM (I-PM)!:F + 2 c, c2 ,u/

The remainder of the q-superiinear proof then is identical to the q-superinear

proof in Theorem 2 5.

Theorem 3.5. Let the assumptions of Theorem 3.4 hold, and assume in addition

that F 'xz) is positive definite. Then Theorem 3.4 remains true if the general-

ized PSBi update (k3 6) is replaced by the generalized DFP update (3.7), or by the

generalized BFGS update 3. 10).

The convergcnce proof for the generalized DFP method is very similar to

the proof of Theorem 3.4. The modifications required are similar to the

modifications Broyden, Dennis, and More j1973] use to convert their proof for

the PSB method into a proof for the DFP method. Bounded deterioration is pro-

ven using the weighted Frobenius norm

....4 .. . , I I I I . . .
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S= H (-1 - H.) H.-, .

It Is straghtforward to show from (3.7) that

r p~(...pT . (k~) >~k 4T yk '~t k)i 'k) (-P)

where

Y. H Yk- = H'Sk , k I y yk Sk) Sk

and from ',3 24).

Linear convergence follows easily from these relations and Theorem 2.3, and q-

.uperlinear convergence from the same techniques used in tne proof of Theorem

3" Tn convergence proof for the generalized BFGS method is essentially the

duai of the DFP proof. as in Broyden, Dennis. and More. Note that YtTSk positive

ciefinite is implied by (3.24) and F'(xx) positive definite.

The crucial question is whether there exist reasonable choices of Skj and

l that sausfy the conditions of Theorems 3.4 and 3.b. The following section

provices a positive answer to this question.

3.b. Forming multiple secant equations for unconstrained optimization

The onvious use of multiple secant equations in an unconstrained rniminuza-

tion xttor;thi would be to allow the quadratic model (3. 1) of f (x) around xk,.

to interpolate gradients atpk>i past iterates txjIt .j =.. • •. pt, where

k =Ilk >LA> . . . >lpAk 0 . (3.27)

Inis wo,,c require the model Hessian lk,I to satisfy pk secant equations

Hkl . Sk = Yk (3.28)

where S . YCRn are defined by (3.5). Unfortunately, Theorem 3.1 shows that

(3 28) is consistent with Hki symmetric (and positive definte) only if Yt7Sk is
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symmetric (and positive definite), and Example 3.' indicates that this is unlikely

for nonquadratLic f (z). In this section we discuss several ways to perturb Y4 to

Y = -A4) so that YtSk is symmetric (and positive definite). These methods

all yield (AY)el = 0, that is. the standard secant equation is unchanged, and

they all generate sequences Skj and YAI that satisry the conditions of

Theorems 3.4-5 for local q-superlinear convergence. The general aim of these

-T
methods is to perturb Y4 as little as possible consistent with 4Ytk symmetric,

and to change more recent secant equations less than less recent secant equa-

tions.

For the remainder of this section, we assume that S1I and YAj are defined

by (3.5, 3.27), with !jkj chosen by a procedure that guarantees K(St)

sufficiently small; a suitable procedure is described at the end of Section 2. We

also drop the subscripts k for the remainder of this section. Now we describe

our first strategy for calculating AY.

ft is trivial to calculate the Lower triangular matrix LcR,"P for whicn

YTS sTy = -L + LT  (3.29)

Note that the diagonai of L is zero. From (3 29), (yTS + L) is svmmetric. Our

frs, sraLegy is to choose AY such that

(AY)r S L . (3.30)

Equation (3 30) implies that for each column (AY)ej of AY, only ((AY)ej) T(Se,),

1 -i<y, need be nonzero. Thus we may choose (AY)e = 0, leaving the standard

secant equation intact. This choice is gua,'anteed if we choose the smallest AY

that satisfies (3 30), in the Frobenius norm From Theorem 2.1, it is

Ay = S (SrS)- LT (3.31)

The above choice of AY guarantees that (Y+AY) TS is symmetric, but not

necessarily that it iS positive definite An easy modification that assures positive

definiteness is to first choose a subset of the rows and columns of (YrS+L) that

. . . ._ ... . . -- t - II t. . .. . .. . . "
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is positive definite, and restrict the past points used to this subset. Tis selec-

tion is easily accomplished using a modification of the Cholesky decomposition

of ' S -, the normal decomposition is attempted, but if the addition of the

th row and column would cause the matrix not to be positive definite, then the
: h past pznt and the j'h row and column of ,YTrL)) is eliminated. If the

normal line search condition in a quasi-Newton method for minimization,

(eY"')rSe 1) > 0, is satisfied, then this strategy always retains the current secant

equation.

In Example 3.2 we apply this strategy to Example 3.

xample 3.2. Let S, Y ER 2
X

2 be the matrices S, and Y from Example 3.1. Then

r o -6
yTS- sTy = [

so = 0 ' Since (YTS+L) = 42 is positive definite, both past points

can be retained From 3.3 )

[0 -6

sC thlat

ro 131
Y=l

[2 4

It ,s easy to show that under the assumptions of Theorem 3.4, there exists

c >0 for which k - F'(x.)S2:-c 'S A., p. deftned by (2i1). Let H. = F'(z.). We

showed in the proof of Corollary 2.6 that

IY - H.S F -5V -y ' ,S

so that

jy, Y ST H,S: F ! - IS 12 A.•

'Iherefore
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" :,'/ ) -L + z,7 ,P(=/J V ) yTs-STyF

(:/.) : (Y T S_-S THS) - (STY y _T 1 S),F _ V--1,',S 
2A

and

,,AY.p ,S(S T S)' L., !!9- / K(S) S,

:Y-H.S. y&. Y - H,,. + Yy-Y! F'c S, A (3.32)

where c = V,- n(-i K'\(S) + :) From Theorems 3.4-5, this implies that a general-

izea PSF3, DFP. or 3FGS algorithm that chooses Sk i and ! Yk t to satisfy the con-

ditions of Corollary 2.6. and modifies Yk by 13 31), will be locally q-superiinearly

convergent to a minimizer x. where V'f (z,) is nonsingular. Sufficiently close to

x,, 3\ 32) guarantees that Y S wuil be positive definite.

V,hen using multipie secant equations in conjunction with a generalized DFP

or 13.'G: update, it may be more reasonable to find the smallest AY, in a

weilgxited Frobenius norm, that satisfies (3.3C) It is straightforward to show

that, for WER' nonsi,,ular, tne solution to

minimize , W-T '.Y,p subject to (AY)T S = L

Is

AY = WTWS (STWT WS'- LT

If we assume tnal the past points have been restricted. if necessary, so that

(Y 7 5r +L) is positive definite, then a reasonable choice is W for which WTWS -

(Y + AY. it is easy to show that this choice results in

N Y = Y (STY) -I L

Y Y - }') also can be Rhown to satisfy the conditions of Theorems 3.4-5

We briefly describe a second strategy for perturbing Y that may come

closer to the goal of changing recent information as little as possible. It is to

change each column of Y only as much as necessary to meet the symmetry

requirements imposed by more recent (diready revised) secant equations.

.. . .. . . .. . .. ..'I I .. n n l l I
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,,\ipeoracall, this means

AlgoriLhm 3. 1.

Set .Y)e 0o

F.'or j, . po

2.1. Select 6C.R' to mninrmze 6

subject to ,Ye +6) T Sei - Se)T( Y+AY)e", .=, ,

2.2 Set (A Y)e = 6.

That .sr colMn 2 of AY is chosen to be as small as possiole subject to the It

colurnn of the I x× princlpai submatrix of ST(Y + AY) equaann th row of this

submatrix The first two columns of AY generated by A!gor~hm 3.' are the

same as are those generated by (3.3'), the remaining columns would, in general,

be different.

S"( Y + AY) generated by Algorithm 3 1 also might not be positive definite.

It is easy to modify Algorithm 3.1, however, to generate ST(Y + AY) positive

definite, by generating iteratively the Cholesky factorization of the current jxj

principal submatrix, and, if the J"th step fails to keep the submatrix positive

defnnite, elrminating this point from the set of past points used at that iteration.

Algoritnm 3" has a close relationship to our first strategy for choosing AY.

From step 2 , NY = SL', where L is lower triangular with zero diagonal. Thus

( + Ayv)r= (y"'S + LSTS) is symmetric, so Algorithm 3.' is equivalent to

f'r oin2 tne unique lower triangular (with zero diagonal) L for which

yTS - STy = Ls T S - STsIfr

ano ".en choosing AY to solve

mnirumize IAyY' subject to AyeS = ,SrS

(Y + A Y) generated by Algorithm 3.1 also obeys the conditions of Theorems 3.4-

b, since it can be shown that
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Since p and K(S) will b- small in practice, the constant in the above equation is

not too large. Finally, a weighted version of Algorithm 3.' can be obtained by

chan ging the norm in step 2 to a weighted norm

'he strategies ,iven in this secton may not be :;.c oest ways to generate

multiple secant equations for rminimzation. They do show, however, that reason-

able choices of Sk and YkJ exist that satisfy ootn the existence conditions of

T I'heorem 3 and the local q-superlinear convergence conditions of Theorem

3 t--n .aybe they will iead to successful computationai aigonithms. We do think

where is a significant difference between the strategies of this section and algo-

rithms that have used projected updates such as those aiscussed in Section 3.3.

Wh ile both approaches interpolate multiple past gradients when f (x) is qua-

dratic, the strategies of this section should come closer to interpolating past

gradients for non-quadratlic functions, because they do not compound the inter-

polation errors of previous updates. The cost is a hilgher rank update.

i.mi -
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